Piecewise tensor product wavelet bases by extensions and approximation rates
نویسندگان
چکیده
In this chapter, we present some of the major results that have been achieved in the context of the DFG-SPP project “Adaptive Wavelet Frame Methods for Operator Equations: Sparse Grids, Vector-Valued Spaces and Applications to Nonlinear Inverse Problems”. This project has been concerned with (nonlinear) elliptic and parabolic operator equations on nontrivial domains as well as with related inverse parameter identification problems. One crucial step has been the design of an efficient forward solver. We employed a spatially adaptive wavelet Rothe scheme. The resulting elliptic subproblems have been solved by adaptive wavelet Galerkin schemes based on generalized tensor wavelets that realize dimension-independent approximation rates. In this chapter, we present the construction of these new tensor bases and discuss some numerical experiments.
منابع مشابه
Adaptive piecewise tensor product wavelets scheme for Laplace-interface problems
A Laplace type boundary value problem is considered with a generally discontinuous diffusion coefficient. A domain decomposition technique is used to construct a piecewise tensor product wavelet basis that, when normalised w.r.t. the energy-norm, has Riesz constants that are bounded uniformly in the jumps. An adaptive wavelet Galerkin method is applied to solve the boundary value problem with t...
متن کاملAdaptive wavelet algorithms for elliptic PDE's on product domains
With standard isotropic approximation by (piecewise) polynomials of fixed order in a domain D ⊂ Rd, the convergence rate in terms of the number N of degrees of freedom is inversely proportional to the space dimension d. This so-called curse of dimensionality can be circumvented by applying sparse tensor product approximation, when certain high order mixed derivatives of the approximated functio...
متن کاملBEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES
We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...
متن کاملSpace-time adaptive wavelet methods for parabolic evolution problems
With respect to space-time tensor-product wavelet bases, parabolic initial boundary value problems are equivalently formulated as bi-infinite matrix problems. Adaptive wavelet methods are shown to yield sequences of approximate solutions which converge at the optimal rate. In case the spatial domain is of product type, the use of spatial tensor product wavelet bases is proved to overcome the so...
متن کاملAn Efficient Approximate Residual Evaluation in the Adaptive Tensor Product Wavelet Method
A wide class of well-posed operator equations can be solved in optimal computational complexity by adaptive wavelet methods. A quantitative bottleneck is the approximate evaluation of the arising residuals that steer the adaptive refinements. In this paper, we consider multi-tree approximations from tensor product wavelet bases for solving linear PDE’s. In this setting, we develop a new efficie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 82 شماره
صفحات -
تاریخ انتشار 2013